老色鬼在线精品视频在线观看|久久久久久五月天|综合专区亚洲无|一区二区三区国产精品视频

        全國

        當(dāng)前位置:

      • 熱門地區(qū):
      • 選擇地區(qū):
      • ×
      當(dāng)前位置: 首頁 > 高中 > 高中備考 > 正文

      高中數(shù)學(xué)考試技巧和方法 做題竅門有什么

      2022-12-28 09:38:39文/周傳杰

      所謂直接法,就是直接從題設(shè)的條件出發(fā),運用有關(guān)的概念、定義、性質(zhì)、定理、法則和公式等知識,通過嚴(yán)密的推理與計算來得出題目的結(jié)論,然后再對照題目所給的四個選項來“對號入座”.其基本策略是由因?qū)Ч?,直接求?

      高中數(shù)學(xué)考試技巧和方法 做題竅門有什么

      高中數(shù)學(xué)??贾R及解題技巧

      1、函數(shù)

      函數(shù)題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。

      2.方程或不等式

      如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;

      3.初等函數(shù)

      面對含有參數(shù)的初等函數(shù)來說,在研究的時候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點,二次函數(shù)的對稱軸或是……;

      4.選擇與填空中的不等式

      選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;

      5.參數(shù)的取值范圍

      求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;

      6.恒成立問題

      恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;

      7.圓錐曲線問題

      圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;

      高中數(shù)學(xué)的證明題的推理方法

      一、合情推理

      1.高中歸納推理是由部分到整體,由個別到一般的推理,在進行歸納時,要先根據(jù)已知的部分個體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;

      2.類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個對象具有某個性質(zhì),則另一個對象也具有類似的性質(zhì)。在進行類比時,要充分考慮已知對象性質(zhì)的推理過程,然后類比推導(dǎo)類比對象的性質(zhì)。

      二、演繹推理

      高中演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。

      三、直接證明與間接證明

      高中直接證明是相對于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。

      間接證明是相對于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明原命題成立,這種證明方法叫做反證法。

      四、數(shù)學(xué)歸納法

      數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項公式成立。

      查看更多【高中備考】內(nèi)容