老色鬼在线精品视频在线观看|久久久久久五月天|综合专区亚洲无|一区二区三区国产精品视频

        全國(guó)

        當(dāng)前位置:

      • 熱門地區(qū):
      • 選擇地區(qū):
      • ×
      當(dāng)前位置: 初三網(wǎng) > 初中數(shù)學(xué) > 數(shù)學(xué)知識(shí)點(diǎn) > 正文

      中考數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn) 2023沖刺中考必備

      2023-02-08 10:00:50文/宋艷平

      中考數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn):一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c,(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)

      中考數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn) 2023沖刺中考必備

      中考數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)

      I.定義與定義表達(dá)式

      一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      II.二次函數(shù)的三種表達(dá)式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

      IV.拋物線的性質(zhì)

      1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。

      對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

      2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

      3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

      當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。

      4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

      5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

      拋物線與y軸交于(0,c)

      6.拋物線與x軸交點(diǎn)個(gè)數(shù)

      Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

      Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

      Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

      X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

      V.二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

      當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

      此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      2023沖刺中考必備二次函數(shù)知識(shí)點(diǎn)

      1.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

      2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

      3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減?。?br/>4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
      (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
      (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
      (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
      當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
      當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

      5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
      頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
      6.用待定系數(shù)法求二次函數(shù)的解析式
      (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
      y=ax^2+bx+c(a≠0).
      (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
      (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

      查看更多【數(shù)學(xué)知識(shí)點(diǎn)】?jī)?nèi)容