老色鬼在线精品视频在线观看|久久久久久五月天|综合专区亚洲无|一区二区三区国产精品视频

        全國

        當前位置:

      • 熱門地區(qū):
      • 選擇地區(qū):
      • ×
      當前位置: 首頁 > 高中 > 高中備考 > 正文

      高一數(shù)學(xué)知識點總結(jié) 數(shù)學(xué)知識點整理

      2022-10-28 15:51:31文/周傳杰

      當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。 兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。

      高一數(shù)學(xué)知識點總結(jié) 數(shù)學(xué)知識點整理

      高一數(shù)學(xué)知識點有哪些

      集合

      一、集合有關(guān)概念

      1.集合的含義

      2.集合的中元素的三個特性:

      (1)元素的確定性如:世界上最高的山

      (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

      (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

      3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

      (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

      (2)集合的表示方法:列舉法與描述法。

      注意:常用數(shù)集及其記法:

      非負整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

      1)列舉法:{a,b,c……}

      2)描述法:將集合中的元素的公共屬性描述出來,寫在大

      括號內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

      3)語言描述法:例:{不是直角三角形的三角形}

      4)Venn圖:

      4、集合的分類:

      (1)有限集含有有限個元素的集合

      (2)無限集含有無限個元素的集合

      (3)空集不含任何元素的集合例:{x|x2=-5}

      集合間的基本關(guān)系

      1.“包含”關(guān)系—子集

      注意:AB有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

      反之:集合A不包含于集合B,或集合B不包含集合A,記作A/B或B/A

      2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

      實例:設(shè)A={x|x2

      -1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。AA

      ②真子集:如果AB,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

      ③如果AB,BC,那么AC

      ④如果AB同時BA那么A=B

      3.不含任何元素的集合叫做空集,記為Φ

      規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

      有n個元素的集合,含有2n個子集,2n-1個真子集

      二·一般我們把不含任何元素的集合叫做空集。

      集合的分類

      (1)按元素屬性分類,如點集,數(shù)集。(2)按元素的個數(shù)多少,分為有/無限集

      關(guān)于集合的概念:

      (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

      (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

      (3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標準。

      集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

      含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

      非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

      在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N*;

      整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

      有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)

      實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學(xué)上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。)

      1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.

      有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

      例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

      無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

      2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

      例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

      而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

      {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

      大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

      一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

      它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

      例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

      高一數(shù)學(xué)知識點

      把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。 例如把28分解質(zhì)因數(shù) 28=2×2×7

      幾個數(shù)公有的因數(shù),叫做這幾個數(shù)的公因數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公因數(shù),例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因數(shù),6是它們的最大公因數(shù)。 公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況:

      1和任何自然數(shù)互質(zhì)。 相鄰的兩個自然數(shù)互質(zhì)。 兩個不同的質(zhì)數(shù)互質(zhì)。

      當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。 兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。

      如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。

      如果兩個數(shù)是互質(zhì)數(shù),它們的最大公因數(shù)就是1。 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6 、8、10、12、 ??

      3的倍數(shù)有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍數(shù),6是它們的最小公倍數(shù)。。

      如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。

      如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。

      幾個數(shù)的公因數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。

      查看更多【高中備考】內(nèi)容