老色鬼在线精品视频在线观看|久久久久久五月天|综合专区亚洲无|一区二区三区国产精品视频

        全國

        當前位置:

      • 熱門地區(qū):
      • 選擇地區(qū):
      • ×
      當前位置: 初三網(wǎng) > 初中數(shù)學 > 數(shù)學知識點 > 正文

      導數(shù)不存在是什么意思

      2020-09-21 13:49:45文/陳宇航

      函數(shù)不連續(xù),導數(shù)不存在。函數(shù)連續(xù),也可能不存在。比如:函數(shù)y=|X|在X=0處,沒有切線。因而在x=0處不可導,其余地方可導。也就是說,只有在連續(xù)的,平滑的(可以和直線相切的)曲線或直線上可導,而對于折線(就是有角的地方)的尖點,是不可導的。

      導數(shù)不存在是什么意思

      導數(shù)含義

      導數(shù)(Derivative),也叫導函數(shù)值。又名微商,是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。

      導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。

      例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。

      不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。

      對于可導的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)(簡稱導數(shù))。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。

      反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

      查看更多【數(shù)學知識點】內容