三角函數(shù)tan的公式:tan(A+B)=(tanA+tanB)/(1-tanAtanB)。三角函數(shù)公式看似很多、很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律,就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強大的聯(lián)系,而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在。
三角函數(shù)tan的公式:tan(A+B)=(tanA+tanB)/(1-tanAtanB)。三角函數(shù)公式看似很多、很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律,就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強大的聯(lián)系,而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在。
三角函數(shù)是數(shù)學(xué)中屬于初等函數(shù)中的超越函數(shù)的函數(shù)。它們的本質(zhì)是任何角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的。其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全。現(xiàn)代數(shù)學(xué)把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴展到復(fù)數(shù)系。
半角公式
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
倍角公式
tan2α=(2tanα)/(1-tanα^2)
降冪公式
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式
tanα=2tan(α/2)/[1-tan^2(α/2)]
兩角和與差公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
和差化積公式
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)
三角函數(shù)是數(shù)學(xué)中屬于初等函數(shù)中的超越函數(shù)的函數(shù)。它們的本質(zhì)是任何角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中...
同角三角函數(shù)的8個公式包括3個倒數(shù)關(guān)系公式,2個商數(shù)關(guān)系公式,3個平方關(guān)系公式。誘導(dǎo)公式的記憶口訣:“奇變偶不變,符號看象限”,其中的奇、偶...
三角函數(shù)是基本初等函數(shù)之一,是以角度(數(shù)學(xué)上最常用弧度制,下同)為自變量,角度對應(yīng)任意角終邊與單位圓交點坐標(biāo)或其比值為因變量的函數(shù)。也可以等...
導(dǎo)數(shù)也叫導(dǎo)函數(shù)值,導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導(dǎo)數(shù)描述了這個函數(shù)在這一點附近的變化率。求導(dǎo)是微積分的基礎(chǔ),同時也是微積分計算的一...
假設(shè)三角形的三邊分比為a,b,c,所對應(yīng)的角分別為A,B,C,則有三角函數(shù)邊角關(guān)系公式為sinA=a/c;cosA=b/c;tanA=a/b...
初中數(shù)學(xué)特殊三角函數(shù)值:cos30度=(根號3)/2、cos45度=(根號2)/2、cos60度=1/2、sin30度=1/2、sin45度...
正弦(sin):對邊比斜邊,即sinA=a/c;余弦(cos):鄰邊比斜邊,即cosA=b/c;正切(tan):對邊比鄰邊,即tanA=a/...
初中三角函數(shù)的公式有半角公式sin(A/2)=±√((1-cosA)/2)、倍角公式Sin2A=2SinA*CosA、兩角和與差公式Sin2...