三角函數(shù)公式:sin(α+k*2π)=sinα(k為整數(shù));cos(α+k*2π)=cosα(k為整數(shù));tan(α+k*2π)=tanα(k為整數(shù));sin[(2k+1)π-α]=sinα;cos[(2k+1)π-α]=-cosα;tan[(2k+1)π-α]=-tanα。
三角函數(shù)的誘導(dǎo)公式(六公式)
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(α+k*2π)=sinα(k為整數(shù))
cos(α+k*2π)=cosα(k為整數(shù))
tan(α+k*2π)=tanα(k為整數(shù))
公式二
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin[(2k+1)π+α]=-sinα
cos[(2k+1)π+α]=-cosα
tan[(2k+1)π+α]=tanα
cot[(2k+1)π+α]=cotα
公式三
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(2kπ-α)=-sinα
cos(2kπ-α)=cosα
tan(2kπ-α)=-tanα
cot(2kπ-α)=-cotα
公式四
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin[(2k+1)π-α]=sinα
cos[(2k+1)π-α]=-cosα
tan[(2k+1)π-α]=-tanα
cot[(2k+1)π-α]=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2kπ-α)=-sinα
cos(2kπ-α)=cosα
tan(2kπ-α)=-tanα
cot(2kπ-α)=-cotα
公式六:
π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限。
或者也可以這樣記:分變整不變,符號(hào)看象限。
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)
(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)
積化和差的四個(gè)公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
和差化積的四個(gè)公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
折疊倍角公式
sin(3a)→3sina-4sin^3a
=sin(a+2a)
=sin2acosa+cos2asina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
cos3a→(2cos^2a-1)cosa-2(1-cos^2a)cosa
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos^2a-1)cosa-2(1-cos^2a)cosa
=4cos^3a-3cosa
三角函數(shù)是基本初等函數(shù)之一,是以角度為自變量,角度對應(yīng)任意角終邊與單位圓交點(diǎn)坐標(biāo)或其比值為因變量的函數(shù)。也可以等價(jià)地用與單位圓有關(guān)的各種線段的長度來定義。
三角函數(shù)在研究三角形和圓等幾何形狀的性質(zhì)時(shí)有重要作用,也是研究周期性現(xiàn)象的基礎(chǔ)數(shù)學(xué)工具。在數(shù)學(xué)分析中,三角函數(shù)也被定義為無窮級(jí)數(shù)或特定微分方程的解,允許它們的取值擴(kuò)展到任意實(shí)數(shù)值,甚至是復(fù)數(shù)值。
三角函數(shù)圖像與性質(zhì)知識(shí)點(diǎn):用五點(diǎn)法作正弦函數(shù)和余弦函數(shù)的簡圖(描點(diǎn)法)。正弦函數(shù)y=sinx,x∈[0,2兀]的圖象中,五個(gè)關(guān)鍵點(diǎn)是:(0,...
三角函數(shù)的圖像與性質(zhì)就是分別在0,+-π/2,π等位置,三家函數(shù)的對應(yīng)取值,以及曲線變化規(guī)律。特殊三角函數(shù)抄值一般指在0,bai30°,45...
終邊相同的角的同一三角函數(shù)的值相等。設(shè)α為任意銳角,弧度制下的角的表示sin(2kπ+α)=sinα(k∈Z);cos(2kπ+α)=cos...
九年級(jí)。三角函數(shù)是在九年級(jí)上冊學(xué)的,主要講直角、鈍角、銳角三角函數(shù),以及簡單的計(jì)算,是在為解三角形打基礎(chǔ),也是高中學(xué)習(xí)正弦定理和余弦定理的基...
三角函數(shù)誘導(dǎo)公式:sin(2kπ+α)=sinα(k∈Z);cos(2kπ+α)=cosα(k∈Z);tan(2kπ+α)=tanα(k∈Z...
sin150°=sin(180°-30°)=sin30°=1/2。正弦在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作si...
sin0等于0。sin0等于0,是根據(jù)正弦的定義算出來的。在直角三角形中,任意一銳角A的對邊與斜邊的比叫做A的正弦,記作sinA,即sinA...