多邊形的內(nèi)角和=180°×(n-2);還可以寫(xiě)成多邊形的內(nèi)角和=180°×(n)一360°。n是多邊形的邊數(shù)。多邊形內(nèi)角和,等于180度乘以(N-2),還可以寫(xiě)成180乘以N減去360度。
由在同一平面且不在同一直線上的三條或三條以上的線段首尾順次連結(jié)且不相交所組成的封閉圖形叫做多邊形。在不同平面上的多條線段首尾順次連結(jié)且不相交所組成的圖形也被稱(chēng)為多邊形,是廣義的多邊形。
組成多邊形的線段至少有3條,三角形是最簡(jiǎn)單的多邊形。組成多邊形的每一條線段叫做多邊形的邊;相鄰的兩條線段的公共端點(diǎn)叫做多邊形的頂點(diǎn);多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角;連接多邊形的兩個(gè)不相鄰頂點(diǎn)的線段叫做多邊形的對(duì)角線。
多邊形內(nèi)角的一邊與另一邊反向延長(zhǎng)線所組成的角,叫做多邊形的外角。
在多邊形的每一個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,它們的和叫做多邊形的外角和。
多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
多邊形分平面多邊形和空間多邊形。平面多邊形的所有頂點(diǎn)全在同一個(gè)平面上,空間多邊形至少有一個(gè)頂點(diǎn)和其它的頂點(diǎn)不在同一個(gè)平面上。
n邊形共有n×(n-3)÷2個(gè)對(duì)角線。因?yàn)槊總€(gè)頂點(diǎn)和它自己及相鄰的兩個(gè)頂點(diǎn)都不能做對(duì)角線,所以n邊形的每個(gè)頂點(diǎn)只能和n-3個(gè)其他的頂點(diǎn)之間做...
由在同一平面且不在同一直線上的三條或三條以上的線段首尾順次連結(jié)且不相交所組成的封閉圖形叫做多邊形。在不同平面上的多條線段首尾順次連結(jié)且不相交...
(n-2)180°。由在同一平面且不在同一直線上的三條或三條以上的線段首尾順次連結(jié)且不相交所組成的封閉圖形叫做多邊形。在不同平面上的多條線段...
正多邊形就是各邊相等,各角也相等的多邊形。小編為大家?guī)?lái)了多邊形的相關(guān)知識(shí)點(diǎn),請(qǐng)接著往下看吧。
不都是360度,只有四邊形是。任何一個(gè)四邊形的內(nèi)角和都是360度。由不在同一直線上的不交叉的四條線段依次首尾相接圍成的封閉的平面圖形或立體圖...
n邊形的內(nèi)角和等于(n-2)×180°(n大于等于3且n為整數(shù))。由三條或三條以上的線段首尾順次連接所組成的平面圖形叫做多邊形。按照不同的標(biāo)...
在數(shù)學(xué)中,由三條或三條以上的線段首尾順次連接所組成的封閉圖形叫做多邊形,三角形由三條邊組成,所以三角形是最簡(jiǎn)單的多邊形。按照不同的標(biāo)準(zhǔn),多邊...
是360度。證明過(guò)程如下:設(shè)多邊形的邊數(shù)為n,則其內(nèi)角和=(n-2)*180°,因?yàn)閚邊形有n個(gè)頂點(diǎn),每個(gè)頂點(diǎn)的一個(gè)外角和相鄰的內(nèi)角互補(bǔ),等...