集合書寫格式舉例:{x|2<x<4,x∈Z}。集合,簡稱集,是數(shù)學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創(chuàng)立于19世紀,關(guān)于集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義,即集合是“確定的一堆東西”,集合里的“東西”則稱為元素。
確定性
給定一個集合,任給一個元素,該元素或者屬于或者不屬于該集合,二者必居其一,不允許有模棱兩可的情況出現(xiàn)。
互異性
一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現(xiàn)一次。有時需要對同一元素出現(xiàn)多次的情形進行刻畫,可以使用多重集,其中的元素允許出現(xiàn)多次。
無序性
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關(guān)系,定義了序關(guān)系后,元素之間就可以按照序關(guān)系排序。但就集合本身的特性而言,元素之間沒有必然的序。
集合符號有:N:非負整數(shù)集合或自然數(shù)集合{0,1,2,3,…};N*或N+:正整數(shù)集合{1,2,3,…};Z:整數(shù)集合{…,-1,0,1,…...
不屬于??占彩羌?,而集合跟集合之間的關(guān)系只能是包含和被包含的關(guān)系。也就是“空集包含于任何集合”。只有集合里的元素與集合間的關(guān)系才是屬于關(guān)...
是集合,因為正方形是其公共屬性,具有該屬性的所有元素構(gòu)成一個集合。集合中元素的數(shù)目稱為集合的基數(shù),集合A的基數(shù)記作card(A)。當其為有限...
空集就自身一個子集,非空集合至少有它本身和空集兩個子集。如果集合A的任意一個元素都是集合B的元素(任意a∈A則a∈B),那么集合A稱為集合B...
交換律:A∩B=B∩A;A∪B=B∪A。結(jié)合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。分配對偶律:A∩(B∪C)=...
N*是正整數(shù)集,所有正整數(shù)組成的集合。數(shù)學中的N*表示不含0的自然數(shù)集。N表示自然數(shù)集,如果加了*號,就表示不包含0。n在代數(shù)中表示很多,如...
集合是指具有某種特定性質(zhì)的具體的或抽象的對象匯總而成的集體。集合的表示方法有列舉法、描述法、圖像法和符號法。
∪并集;∩交集;∈屬于;{,…,}諸元素a,b,c…,構(gòu)成的集合;[,]R中由a到b的閉區(qū)間;(,)R中由a到b的開區(qū)間;[,)R中由a到b...